To measure acceleration data in structural objects and collect CAN data from mining machinery, it is important to collect data from massive sensor nodes in parallel with high-throughput and low-latency. Toward this, we are developing a multi-hop communication protocol called SB-CTF. This protocol uses concurrent transmission flooding (CTF) as a topology-independent and robust control plane, and uses unicast burst forwarding as a high-speed user plane. For avoiding interference as well as enabling parallel data transmission in multiple forwarding paths, SB-CTF sets up sender nodes and transmission channels by using CTF. Also, for maintaining the efficiency of burst forwarding as well as switching sender nodes with high frequency, SB-CTF reduces guard time with high-accuracy time synchronization. Thus, SB-CTF can perform a high-throughput (more than 10kB/s) and low-latency (a couple of seconds) collection in a network with a hundred of nodes, by switching sender nodes within dozens of milliseconds with no interference. We are implementing several actual applications with SB-CTF including structural health monitoring.